. . .

Algebra 2

11-03 Analyzing Geometric Sequences and Series

Geometric Sequence			
•	Created by	by a common (<i>r</i>)	
Are the	ese geometric sequenc	ices?	
1, 2, 6,	24, 120,	96, 48, 24, 12, 6,	
Form	ula for <i>n</i> th term		
		$a_n = a_1 \cdot r^{n-1}$	
•			
Write a	a rule for the <i>n</i> th term a	and find a_8 .	
5, 2, 0.8	3, 0.32,	112, 56, 28, 14,	

One term of a geometric sequence is $a_4 = 3$ and r = 3. Write the rule for the n^{th} term.

One term of a geometric sequence is $a_4 = -192$ and r = 4. Write the rule for the n^{th} term.

If two terms of a geometric sequence are $a_2 = -4$ and $a_6 = -1024$, write rule for the n^{th} term.

Algebra 2 11-03 Sum of geometric series

$$S_n = a_1 \left(\frac{1-r^n}{1-r}\right)$$

Find the sum of the first 10 terms of $4 + 2 + 1 + \frac{1}{2} + \cdots$

 $\sum_{i=1}^{8} 5\left(\frac{1}{3}\right)^{i-1}$

You tell the Gospel to your friends. Four of your friends tell the Gospel to their friends, then four of each of their friends tells the Gospel, and so on. Find the total number of people who told the Gospel to others after the eighth round.

616 #1, 5, 13, 17, 19, 23, 27, 31, 35, 37, 41, 43, 44, 47, 53, 63, 65, 66, 68, 70 = 20